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Abstract| This article reviews a speci�c speech research

area called acoustic-to-articulatory inversion of speech, or

speech inversion, which refers to the problem of mapping

the acoustic speech signal onto a space describing the con-

�guration of the human vocal tract that actually produced

this signal. This space may be modeled in a variety of ways,

such as with trajectories of the movement of the articula-

tors - certain parts of the human vocal tract- derived by

means of some specialized medical imaging device, or by us-

ing linguistics-related abstract classes to describe the evolu-

tion of the articulatory state through time. The problem is

by far non-trivial, mainly due to the one-to-many nature and

the high non-linearity of the acoustic to articulatory map-

ping. Numerous approaches towards its solution have been

proposed. Such a solution could have several applications,

with most important the probability of improving the per-

formance of current automatic speech recognition systems.
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I. Introduction

H
UMAN speech is, from a strictly mechanical point of

view, the e�ect of the air 
owing from the lungs to

the acoustic environment, through the human vocal tract.

This air
ow is normally constricted by the various parts of

the human vocal tract, such as the vocal cords, the tongue,

the palate, the teeth or the lips. The variety of the levels

and types of this constriction is the actual cause of the

variety of the sounds that a human can produce and that

constitute the units forming speech, perhaps the greatest

expression of human intelligence.

The parts of the human vocal tract, such as the foremen-

tioned ones, which have a role in the production of speech,

are called the articulators. The positioning of the body of

them, which is obviously of crucial importance for speech

production, is called the articulatory state.

Still from the same mechanical viewpoint, the �nal man-

ifestation of human speech is the acoustic signal. Under

normal conditions, humans are quite accustomed with it,

since they can perceive it with the sense of hearing. It may

be recorded with readily available devices and quite nu-

merous techniques have been developed in order to process

and analyze it.

Apparently, the articulatory state and the correspond-

ing acoustic signal bear a strong relationship among each
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other. We may view two spaces, an acoustic space and an

articulatory one as well as a process of mapping each one

onto the other. If the articulatory state is known in some

detail, the acoustic signal can easily be derived. This is

an actual physical process - the human speech production

mechanism - which is quite straightforward.

What is of concern here is the inverse case. Namely, if

the acoustic signal is known (something which is the usual

case) can the articulatory state be somehow calculated or

even approximated?

The recovery of the articulatory state given the acoustic

signal is not a trivial problem. Not having a direct an-

alytical solution, it is considered a diÆcult and ill-posed

problem, puzzling researchers for over three decades now,

and being given the status of becoming a whole research

area, called acoustic-to-articulatory inversion of speech or,

more simply, speech inversion. Of course there are reasons

for this diÆculty.

One of the �rst things one has to consider is the way

the articulatory state will be described, or modeled. It is

a rather complicated problem to which we will refer later

in this article. Another factor that contributes to making

the speech inversion problem hard to solve, is the \one-to-

many" nature of the acoustic-to-articulatory mapping. A

given articulatory state has always only one acoustic real-

ization. But, from the other side, a given acoustic signal

may be the outcome of more than one articulatory states.

Furthermore, the mapping is highly non-linear. A slight

variation of the articulatory state may give rise to a whole

di�erent acoustic signal. To picture this one may think of

the extreme case of the ventrilloquist, where the articula-

tors seem to be static, while a plethora of sounds are being

heard.

The motivation behind the ongoing research on acoustic-

to-articulatory inversion despite the inherent diÆculties of

the problem seems to arise from the potential applications

of a succesful solution. Perhaps the most interesting one is

the possibility of using the additional articulatory informa-

tion derived from such a solution in order to improve the

performance of current automatic speech recognition sys-

tems, especially in cases such as with noisy, spontaneous

or pathological speech. Such a possibility is demonstrated

in several recent papers, where the articulatory informa-

tion is embedded in speech recognition systems by vari-

ous means, such as Bayesian Networks or factorial Hid-

den Markov Models. Other proposed applications include

speech synthesis, building visual aids for teaching hearing



impaired people how to speak and as a means of study in

phonetics and phonology.

Another important expected outcome from the study of

the acoustic-to-articulatory inversion problem is the mod-

eling of coarticulation. Coarticulation is a term describ-

ing the manner the acoustic manifestation of a particu-

lar phoneme is dependent by its context. In other words

that a phoneme may sound di�erently depending on the

phonemes it is surrounded by. Classic approaches to auto-

matic speech recognition deal with coarticulation by con-

sidering biphones or triphones instead of phonemes as

atomic speech units, or classes, to be modeled, thus in-

creasing by far the number of these classes, and needing

far more training examples.

II. Manifestations of the Articulatory Space

We have already mentioned that an important �rst thing

to consider when dealing with the acoustic-to-articulatory

inversion problem is the manner by which the articulatory

state will be described. There is a number of possible sug-

gestions.

Various theoretical models have been developed in the

past in order to describe the shape of the human vocal

tract during speech production. They have been used ex-

tensively in early works on speech inversion and still do

in some degree. The science of linguistics, and particu-

larly phonetics, o�ers a second broad class of models for

describing the articulatory state, though in a somewhat

abstract fashion. Some writers refer to works using these

models with the term \Detection of Phonological Features"

instead of \Acoustic-to-Articulatory Inversion" but, in this

article, we will prefer a uni�ed view of those. Finally, the

most promising manner of describing the articulatory state

is related to the use of some specialized medical imaging

devices that actually track and record the movement of the

human articulators during the production of speech.

A. Theoretical Models

Several theoretical models that describe the human

speech production process have been proposed until now.

We will consider here two of the most important ones, in

the context of the acoustic-to-articulatory inversion �eld,

namely Maeda's model [1] and the lossless tube model [2].

A.1 Maeda's Model

Maeda's articulatory model represent the vocal tract ge-

ometry with seven articulatory parameters: three for the

tongue (tongue dorsum, tongue body and tongue tip), two

for the lips (opening and protrusion), one parameter for

the jaw and one for the larynx.

Maeda's model needs to be adapted before being applied

to a particular speaker [3]. In Figure1 a visualization of

Maeda's model adapted for a particular speaker is shown.

A.2 The Lossless Tube Model

The human vocal tract is simulated by a straight tube

through which air is blown. It has been found that a tube

with a curvature does not sound much di�erent than from

Figure 1. White lines visualize Maeda's model adapted for a partic-
ular speaker (Figure taken from http://www.loria.fr/)

Figure 2. A simple illustration of the lossless tube model (Figure
taken from http://isl.ira.uka.de/)

one without. Furthermore, it is assumed that the tube

is lossless. This means that energy loss due to friction

between the 
owing air and the tract walls is not modeled.

The model can be extended further so that a series of

connected tubes are modelling the constrictions in the vocal

tract. A set of parameters describing this model can be

obtained by �guring out where air pressure waves hit the

walls and get re
ected. This phenomenon can be quanti�ed

as entities known as re
ection coeÆcients for each tube [4].

In �gure 2 the lossless tube model is illustrated.

B. Linguistics-Derived Models

Using knowledge of linguistics, and particularly phonet-

ics, any given phoneme of a spoken language may be related

to a vector of features that describe by qualitative means

the corresponding articulatory state. Sometimes these fea-

tures may also have a functional, as opposed to a srtictly

articulatory, meaning.

Phonetic features have also been proposed as the ba-

sis of spoken language universals, in the sense that while



Table I

Example of a multi-valued feature system

Features Values

voicing voiced, voiceless, silence

vowel, nasal, lateral,

manner approximant, fricative,

silence, stop

dental, coronal, labial,

place retro
ex,velar, glottal,

high, mid, low, silence

front-back front, back, nil, silence

rounding rounded, unrounded, nil, silence

Table II

Conversion of phones into multi-valued features

Phones Features

[aa] voiced, vowel, low, back, unrounded

[ow] voiced, vowel, mid, back, rounded

[p] unvoiced, stop, labial, nil, nil

[n] voiced, nasal, coronal, nil, nil

[f] unvoiced, fricative, labial, nil, nil

phonemes of a language vary, the set of features does not

and is the same for all languages.

We may consider three broad classes of such features

that, in a way, relate to periods in \the history of thought"

for modern phonetics. These are the multi-valued features

describing primarily the place and manner of articulation,

the binary - or distinctive - features, and the Government

Phonology primes.

B.1 Multi-Valued Phonetic Features

The articulatory state may be represented by means of

abstract classes describing the most essential articulatory

properties of speech sounds [5], [6]. Examples of such prop-

erties are voiced, nasal, rounded etc.

Several articulatory components, or dimensions, which

are partially independent of each other interact in order

to produce human speech. Examples of such dimensions

are voicing which describes the state of the glottis and the

activity of the vocal cords, the manner of articulation, i.e.

the shape of a constriction made by an articulator in the

vocal tract, and the place of articulation, which describes

the actual location of the previous constriction. These com-

ponents may take multiple values.

A variety of choices for the forementioned components or

the values they may take can be found in the literature [7],

[8]. In Table I the feature system selected in [8] is illus-

trated. Table II shows how some phones are decomposed

into these features.

Table III

Conversion of phones into distinctive features

phone [aa] [ow] [p] [n] [f ]

vocalic + + - - -

consonantal - - + + +

high - - + - -

back + + - - -

low + - - - -

anterior - - + + +

coronal - - - - -

round - + - - -

tense + + - - -

voice + + - + -

continuant + + - - +

nasal - - - + -

strident - - - - +

B.2 Distinctive Features

The principle of distinctive features was �rst proposed

in the classic work of Jakobson, Fant and Halle in [9].

Although this work gained much attention when published,

many regarded features as nothing more than a useful clas-

si�cation scheme, whereby one could refer to the class of

\nasal phones" or \voiced phones". The power of features

became evident with the publication of The Sound Pattern

of English [10] where Chomsky and Halle showed that

what were otherwise complex phonological rules could be

written concisely if features where used rather than phones.

The feature system in The Sound Pattern of English uses

production-based binary features. In this system, each

phone is composed of a vector of 13 binary components

which represent production features such as voicing, high,

low (representing tongue position during vowels), round

(for lip rounding), continuant (to distinguish continuous

sounds such as vowels and fricatives from stops), and so

on. A \+" or a \-" is indicating the presence or absence

of a feature in a given phone. In Table III some exam-

ples of analysis of phones into these distinctive features are

shown [7].

Slight variations of the previous system have also been

proposed in the literature (e.g. [11]).

B.3 Government Phonology Primes

In Government Phonology [12] sounds are described by

combining primes in a structured way, and phonological

phenomena are accounted for by the fusing and splitting of

primes within a sound.

The primes A, I, U and @ are known as the resonance

primes, and capture consonant and vowel sounds. They

are derived from examination of the spectral properties of

vowels. The ? prime is present in sounds with a closure or



Table IV

Government Phonology Primes

phone [aa] [ow] [p] [n] [f ]

primes A * * *

I

U * * *

@

? * *

h * *

H * *

N *

head a *

i

u *

any abrupt and sustained decrease in amplitude. Frication

(acoustically evident as aperiodic energy) is indicated by

the presence of the h prime, and the nasal prime N is

present in sounds with an articulatory oral closure. The H

prime indicates unvoiced sounds, where the vocal folds are

sti� and not vibrating periodically.

The vowels [a], [i], [u], [@] are represented by just a single

prime while all other sounds are made by fusing primes. For

example, fusing A and U gives [o] and fusing A and I pro-

duces [e]. More complex sounds, like diphthongs, require

the primes to be arranged in a structured way. As well as

simply fusing two or more primes, one of the primes can

optionally be made the head of the expression, denoting its

greater signi�cance both phonologically and in determining

the phonetic realisation of the sound.

In Table IV examples of government phonology primes

for some phones are shown.

C. Medical Imaging Models

Perhaps the most interesting, in the context of the

acoustic-to-articulatory inversion problem, way of model-

ing the articulatory space, involves the use of specialized

medical imaging devices that draw information about the

positioning or the activity of the articulators directly from

the human subject during the process of speech produc-

tion. The acquisition of such data is a very diÆcult and

expensive task, nevertheless a few databases have been de-

veloped and are being made available, giving a boost to the

relevant research.

C.1 Types of Medical Imaging Data

A number of techniques are used in order to partially

acquire the articulatory state during speech directly from

the human subject.

X-ray cineradiography [13] involves x-ray �lming of the

vocal tract during speech production. This particular tech-

nique is no longer used because of the danger of radiation
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Figure 3. Example of EMA data. A female subject is uttering the
phrase \We got drenched from the uninterrupted rain". From
top to bottom the audio signal, the x-axis and y-axis trajectories
for the lower lip and the x-axis and y-axis trajectories for the
tongue dorsum are shown.

Figure 4. Example of EPG data. The tongue shape is apparent.
Asterisks indicate the tongue-palate contact points.

overexposure. However, a lot of old x-ray �lms have been

preserved and are available for research purposes.

For the acquisition of Electromagnetic Misdagittal Ar-

ticulography (EMMA) or Electromagnetic Articulography

(EMA) [14] data, sensor coils are attached to the human

subject, on speci�c places on the lips, the teeth, the tongue

and the velum. Then the human subject wears a special

helmet which produces an alternating magnetic �eld that

records the position of the coils at end points of small �xed-

size time intervals. The outcomes are time-series, or trajec-

tories, that illustrate the movement of the coils. Usually,

there are two trajectories for each coil, one for the move-

ment in the front-back direction of the head (x axis), and

one for the top-bottom direction (y axis). An important

characteristic of this trajectories is that they vary slowly

in time. Figure 3 shows an example of EMA data.

In electropalatography (EPG) [15] the patterns of con-

tact between the tongue and the palate during speech are

determined. The technique utilises an arti�cial palate with

62 silver electrodes embedded in its tongue-facing surface.

Figure 4 shows two instaces of electopalatographic data,
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Figure 5. Audio and corresponding laryngographic signal of a male
speaker uttering the phrase \My instructions desparetaly need
updating"

where the asterisks indicate the points of the tongue that

contact the palate.

Laryngography [16] or electroglottography (EGG) [17] in-

volves the use of two electrodes which are placed on the

throat of the speaker positioned on each side of the thy-

roid cartilage. A weak but constant voltage is passed from

one electrode to the other allowing the current to 
uctu-

ate depending on the contact variations between the vocal

cords. These variations are recorded giving the outcome

that may be called the laryngographic signal. This signal

includes high frequencies and resembles the actual audio

speech signal. Figure 5 shows an example of a laryngogr-

phic signal.

Finally, pneumotachography [18] is a technique for mea-

suring tha nasal and oral air
ow velocity. Its actual use is

for the diagnosis of respiratory problems such as asthma,

but it might also be used as a source of additional infor-

mation in the context of speech inversion.

C.2 Articulatory Databases

Three databases that include articulatory data, such as

the ones described previously, are the MOCHA-TIMIT

database, the EUR-ACCOR database and the X-Ray Wis-

consin database.

The MOCHA-TIMIT database [19] is being devel-

oped by the Queen Mary University College in Edinburgh,

Scotland. The goal was two gather data from 40 human

subjects, but until the writing of this article data from only

two of them, a male and a female, were freely available

via ftp. The corpus, for each speaker, consists of 460 En-

glish sentences taken from the TIMIT continuous speech

database [20] that are designed to include the main con-

nected speech processes in English. Data include the audio

signal sampled at 16 KHz, phonetic and orthographic tran-

scripts, the laryngographic signal sampled at 16 KHz, EMA

data from the lower and upper incisor, the lower and upper

lip, the tongue tip, tongue blade, tongue dorsum and the

velum, sampled at 500 Hz, EPG data sampled at 200 Hz,

and video recordings of the front view of the mouth area

The EUR-ACCOR database [21] was developed as

part of a European ESPRIT project. It contains data from

seven European languages (Catalan, English, French, Ger-

man, Irish Gaelic, Italian and Swedish). The corpus con-

sists of a combination of nonsense items, real words and

short sentences. There are 5-10 speakers per language.

Gathered data include the audio signal sampled at 20 KHz,

laryngographic signal sampled at 10 KHz, pneumotachog-

raphy data sampled at 500 Hz, and EPG data sampled at

200 Hz.

Finally, the X-ray Wisconsin database [22] includes

EMA-like data, gathered from the University of Wisconsin

X-ray Microbeam facility.

III. Modeling the Acoustic Signal

One of the �rst things one has to consider in order to

buid a speech recognition system is the choice of features

by which the acoustic signal will be represented, as the raw

signal would be too much for any such system to handle.

This is called a front-end parametrization of the signal,

and is something to consider also in the case of acoustic-

to-articulatory inversion.

The Mel Frequency Cepstral Analysis of the speech sig-

nal [23] provides such a set of fetures, called the Mel Fre-

quency Cepstral CoeÆcients, or MFCCs. The MFCCs are

robust, contain much information about the vocal tract

con�guration regardless the source of excitations, and may

be used to represent all classes of speech sounds. They are

a classic choice for automatic speech recognition systems

and are used in the vast majority of the speech inversion

implementations we are about to present subsequently.

Some works on acoustic-to-articulatory inversion of

speech also use the Linear Predictive Coding (LPC) [24]

coeÆcients for the front-end parametrization of the speech

signal despite the fact that in the context of speech recog-

nition their use is quite obsolete since they have in a large

extend been replaced by the MFCCs.

Another set of features that might also be used in the

same sense are the Perceptual Linear Predictive (PLP) [25]

coeÆcients. The PLP coeÆcients capture the way humans

perceive the speech signal with the sense of hearing.

Finally, Hansen in [26] presents a set of acoustic param-

eters which are immediately associated to speci�c phonetic

and articulatory phenomena, suggesting the possibility of

their use for speech inversion tasks.

IV. Approaches Towards A Solution

Various approaches have been proposed in the quest for

an optimal solution to the acoustic-to-articulatory inver-

sion problem. Following a taxonomy of those found in [27]

we may view codebook approaches, neural network ap-

proaches, constrained optimization approaches, analytical

approaches as well as stochastic modeling and statistical

inference approaches. In the following, we present some

recent examples of these approaches.

For a thorough discussion of older approaches to the

speech inversion problem, the interested reader is referred

to the work of Schroeter and Sondhi in [28]. We also



have to point out the work of Dusan in [29] where meth-

ods of applying phonetic and phonological constraints to

the acoustic-to-articulatory inversion problem are reviewed

and discussed upoon.

A. Codebooks

Some acoustic-to-articulatory inversion methods use

codebook lookup procedures combined with optimization

approaches in order to perform the inversion. The artic-

ulatory space is quantized and the corresponding acoustic

features are synthesized to form a codebook of acoustic and

articulatory vector pairs. The quality of the expected ar-

ticulatory trajectories, which are the result of the inversion

process, is highly dependent on the initial solutions given

by the codebook. Thus, it is important that the codebook

gives a good coverage of the articulatory space.

Ouni and Laprie in [30] represent the codebook as a hi-

erarchy of hypercubes. Each hypercube represents a region

of the articulatory space where the articulatory-to-acoustic

mapping is linear. For each acoustic entry the whole code-

book is searched for the relative articulatory parameters to

be retrieved.

B. Neural Networks

In neural network approaches to the acoustic-to-

articulatory inversion problem, the parameters of some

neural networks are trained to get a non-linear continu-

ous mapping between the articulatory parameters and the

acoustic features. Approaches of this kind are most use-

ful when the articulatory space is represented by means of

linguistics-derived abstract classes.

King and Taylor in [7] use recurrent neural networks

to perform feature detection on three phonological feature

systems, namely distinctive features, multi-valued features

and government phonology primes. Their networks per-

form well, with the average acccuracy for a single feature

ranging from 86% to 93%.

Kirchho� in [8] uses a set of multilayer perceptrons to

map between MFCC parameters and the set of multivalued

articulatory features of Table I. She achieves accuracy rates

up to 95% depending on the feature in question.

C. Constrained Optimization

Prado et al. in [31] present a constrained optimiza-

tion approach for estimating the articulatory state from the

speech signal. The scheme they use concatenates a gradient

search, which is accelerated using an algorithm inspired by

the Fletcher-Reeves method, a classic non-linear optimiza-

tion approach, and a linear successive approximation which

assures convergence near the optimal articulatory vector.

Constraints are imposed on the articulatory parameters to

avoid physiologically impossible vocal tract con�gurations.

D. Analytical Methods

Laprie and Mathiew [32] present an example of an

analytical approach to the speech inversion problem. They

use Maeda's articulatory model and a variational calcu-

lus method. Their method includes inherent coarticulation

constraints in the de�nition of an energy function to be

minimized analytically.

E. Stochastic Modeling and Statistical Inference

Pehaps the most up-to-date and promising class of so-

lutions to the speech inversion problem is the one that

is based on stochastic modeling and statistical inference

methods.

Richmond in [33] uses EMA data from the MOCHA-

TIMIT database and calls upon a mixture density network

to perform the acoustic-to-articulatory inversion. His in-

vestigation shows that the mixture density network is very

well suited for delivering the required functionality for per-

forming the inversion mapping.

King andWrench in [34] use dynamical systemmodel-

ing (Kalman �ltering) with EMA data. The speech signal

is parametrized by means of LPC analysis. One of their

conclusions is that the underlying physical mechanism of

speech production is suÆciently linear not to require non-

linear models; however, the acoustic observations do not

have a linear relationship to the articulatory parameters.

Ramsay in [35] takes a non-linear �ltering approach. He

outlines a stochastic framework for adapting an arti�cial

model to real speech from acoustic measurements alone, us-

ing the Expectation Maximization (EM) algorithm [36] and

showing that the solution of the problem in a maximum-

likelihood sense relies on solving an associated state esti-

mation problem to gather statistics from the measurement

data.

Dusan and Deng in [37] use the EM algorithm, with

the E-step accomplished by the Iterated Extended Kalman

�ltering and smoothing [38], to estimate the articulatory

model parameters. They use EMA data and test their

method only on vowel tokens.

Finally, Carreira-Perpi~n�an and Renals in [39] use

EPG data from the EUR-ACCOR database and PLP

parametrization of the speech signal. They present a latent

variable approach to the acoustic-to-articulatory mapping.

In latent variable modeling, the combined acoustic and ar-

ticulatory data are assumed to have been generated by an

underlying low-dimensional process. A parametric proba-

bilistic model is estimated and mappings are derived from

the respective conditional distributions.

V. Articulatory Information for Speech

Recognition

Current automatic speech recognition systems [40], [41]

typically use Hidden Models, Neural Networks or hybrid

schemes in order to perform a mapping between the acous-

tic speech signal and the corresponding words or phonemes.

A language model is used to retrieve the a priori probabili-

ties of the appearance of these language units. Apart from

this language model, the only input source of such systems

is the acoustic signal, parametrized in some way.

Speech recognition systems based on this approach

achieve nowadays quite satisfactory results when dealing

with normal, structured and noise-free speech. However,



this is not the case with noisy, spontaneous or pathologi-

cal systems. On the other side, it is widely accepted that

these systems have reached a plateau in terms of perfor-

mance [42], [43].

So, there is actually a question of �nding novel ap-

proaches to the automatic speech recognition problem.

One of these approaches uses articulatory information in

order to enhance recognition. This information usually

may not be readily available for everyday applications and

has to be retreived from the acoustic speech signal by

means of some form of acoustic-to-articulatory inversion.

Some recent works explore this concept.

Kirchho� in [8] uses multi-valued abstract articulatory

features extracted from the speech signal by means of a set

of multilayer perceptrons as a souce of information for the

recognition of clear, reverberant and noisy speech. Mixture

of experts systems corresponding to three di�erent kinds of

input sources are considered: using acoustic features alone,

articulatory features alone, and both of them simultane-

ously. The latter system is the outcome of the combination

of the other two by means of a product rule. The results

indicate that using articulatory features instead of acoustic

ones doesn't present with much of an improvement, as the

results are somewhat similar. Nevertheless, the combined

system exhibits a signi�cant improvement, especially in the

noisy speech case. As a matter of fact the improvement in-

creases as the speech-to-noise ratio gets lower.

Frankel and King in [44] use EMA data and linear dy-

namical modeling. They consider acoustic and both real

and simulated articulatory data for a simple phone classi-

�cation task. They conclude, just like Kirchho�, that the

use of combined acoustic and articulatory data actually

improves recognition performance.

Richardson et al. in [45] introduce a type of a Hiddden

Markov Model where each state represents an articulatory

con�guration. The state transition matrix is governed by

dynamic constraints on articulator motion. They call this

scheme a Hidden-Articulator Markov Model, or HAMM.

Their model by itself does not produce better word recogni-

tion results compared to a standard, acoustic-based HMM,

however a combination of the two systems does. It is sug-

gested that the articulatory system makes in general dif-

ferent mistakes than the acoustic one. This fact is actually

bene�cial for the recognition task.

Stephenson et al. in [46] building upon the ground-

work done by Zweig in [47], investigate the use of Dynamic

Bayesian Networks (DBNs) for incorporating articulatory

data with acoustic data in automatic speech recognition.

During training, the articulatory data, which are derived

from the X-ray Wisconsin database, are introduced as vari-

ables to the DBN, which is expected, during testing, to

be able to infer the distribution of the articulatory posi-

tions given the observed acoustics, thus accomplishing the

acoustic-to-articulatory inversion task as a sub-product of

the recognition task itself.

Finally Sawhney and Wheeler in [48] attempt to use

knowledge of distinctive features in the context of recog-

nizing dysarthric speech.

VI. Conclusion and Future Work

The recovery of the articulatory space from the acoustic

signal poses an intriguing problem which has attracted, and

keeps attracting, the interest of researchers worldwide. The

problem is not a trivial one; on the contrary, it is considered

diÆcult and ill-posed. It incorporates a number of scien-

ti�c disciplines such as signal processing, machine learning,

phonetics and medicine. It may have several forms, de-

pending on the manner the articulatory space is described.

Various attempts to solve it have been proposed, using a

wide range of methods and techniques.

A succesful solution to the acoustic-to-articulatory inver-

sion problem could have numerous applications, perhaps

the most important of them being its use in the context af

automatic speech recognition. Indeed, it has been proven

that knowledge of the articulatory state can enhance the

performance of speech recognition systems; a possibly es-

sential improvement considering the current state of such

systems. The role of the inversion in this context is to pro-

vide the articulatory data. Work is still in an early stage; a

fully functional automatic speech recognition system that

uses articulatory information is yet to be developed.

From our perspective, we consider the acoustic-to-

articulatory inversion of speech, not only as a challenging

machine learning problem, but as a suitable testbed for

the application of various stochastic modeling methods as

well. We have already built an Elman Neural Network that

detects distinctive features from the speech signal. Devel-

opment and testing were done on a small, non-standard

corpus, with encouraging results. In the near future, we

are planning on working with EMA data from the MOCHA

database, considering the problem as more of a time series

processing one. The problem is to map one time series (the

speech signal) to a set of others (the EMA trajectories). We

are thinking of using Neural Networks to this end [49].

In this article, we have tried to roughly present the

acoustic-to-articulatory inversion �eld of research, outlin-

ing its basic concepts and reviewing some of the most cur-

rent approaches to it. Surely, our discussion is by far a

non-exhaustive one, since speech inversion is a quite large

and lively �eld, with more than a hundred of published

works having been counted so far.
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